Metode Pengukuran Kapasitansi Dengan Menggunakan Mikrokontroler Arduino Uno

  • Valentinus Galih Vidia Putra Politeknik STTT Bandung
  • Andrian Wijayono Politeknik STTT Bandung
  • Endah Purnomosari Politeknik STTT Bandung
  • Ngadiono Ngadiono Politeknik STTT Bandung
  • Irwan Irwan Politeknik STTT Bandung
Keywords: Resistor, Capacitor, Charged, Discharged

Abstract

RC circuit (Resistor-Capacitor) is an electric circuit that has a combination of resistor and capacitor components which are installed either series or parallel. This research was conducted to measure the capacitance of two capacitors with different capacitances with only using one resistor. This study aims to compare the capacitance both experimentally (using data acquisition systems) and theoretically. Capacitance measurements were carried out experimentally using Arduino Uno and at a maximum voltage of 5 volts. In this research, it has been successfully determined the charge capacitance of the capacitors, both in experiment and theory. It has been found the correlation of the results between experiment and theory (the value of R2 in charging and discharging process is greater than 0.95).

Downloads

Download data is not yet available.

References

Allagui, A., Elwakil, A. S., Fouda, M. E., & Radwan, A. G. (2018). Capacitive behavior and stored energy in supercapacitors at power line frequencies. Journal of Power Sources, 390,142–147. https://doi.org/10.1016/j.jpowsour.2018.04.035

Arshad, A., Khan, S., Alam, A. H. M. Z., Tasnim, R., Gunawan, T. S., Ahmad, R., & Nataraj, C. (2016). An activity monitoring system for senior citizens living independently using capacitive sensing technique. In IEEE International Instrumentation and Measurement Technology Conference Proceedings. https://doi.org/10.1109/I2MTC.2016.7520405

Badamasi, Y. A. (2014). The working principle of an Arduino. In 11th International Conference on Electronics, Computer and Computation (ICECCO). https://doi.org/10.1109/ICECCO.2014.6997578

Cheng, J., Amft, O., Bahle, G., & Lukowicz, P. (2013). Designing Sensitive Wearable Capacitive Sensors for Activity Recognition. IEEE Sensors Journal, 13(10), 3935–3947. https://doi.org/10.1109/JSEN.2013.2259693

Coyle, S., King-Tong Lau, Moyna, N., O’Gorman, D., Diamond, D., Di Francesco, F., Costanzo, D., Salvo, P., Trivella, M.G., De Rossi, D.E., Taccini, N., Paradiso, R., Porchet, J.A., Ridolfi, A., Luprano, J., Chuzel, C., Lanier, T., Cavalier, R., Schoumacker, S., Mourier, V., Chartier, I., Convert, R., De Moncuit, H., & Bini, C. (2010). BIOTEX—Biosensing Textiles for Personalised Healthcare Management. IEEE Transactions on Information Technology in Biomedicine, 14(2), 364–370. https://doi.org/10.1109/TITB.2009.2038484

Dean, R. N., & Rane, A. K. (2013). A Digital Frequency-Locked Loop System for Capacitance Measurement. IEEE Transactions on Instrumentation and Measurement, 62(4), 777–784. https://doi.org/10.1109/TIM.2013.2240092

González, T.J., Torres, S.R., Blaya, R.P., Toledo, M.A., Jiménez, B.M., & Soto, V.F. (2019). Design and Calibration of a Low-Cost SDI-12 Soil Moisture Sensor. Sensors, 19(3), 491. https://doi.org/10.3390/s19030491

Halliday, D., Resnick, R., Walker. (1997). Fundamentals of Physics-Extended, 5th, John Wiley & Sons, New York.

Hoffmann, T., Eilebrecht, B., & Leonhardt, S. (2011). Respiratory Monitoring System on the Basis of Capacitive Textile Force Sensors. IEEE Sensors Journal, 11(5), 1112–1119. https://doi.org/10.1109/JSEN.2010.2082524

Kondalkar, V. V., Ryu, G., Lee, Y., & Lee, K. (2019). Development of highly sensitive and stable humidity sensor for real-time monitoring of dissolved moisture in transformer-insulating oil. Sensors and Actuators B: Chemical, 286, 377-385. https://doi.org/10.1016/j.snb.2019.01.162

Laflamme, S., Saleem, H. S., Vasan, B. K., Geiger, R. L., Chen, D., Kessler, M. R., & Rajan, K. (2013). Soft Elastomeric Capacitor Network for Strain Sensing Over Large Surfaces. IEEE/ASME Transactions on Mechatronics, 18(6), 1647–1654. https://doi.org/10.1109/TMECH.2013.2283365

Laflamme, S., Ubertini, F., Saleem, H., D’Alessandro, A., Downey, A., Ceylan, H., & Materazzi, A. L. (2015). Dynamic Characterization of a Soft Elastomeric Capacitor for Structural Health Monitoring. Journal of Structural Engineering, 141(8), 04014186. https://ascelibrary.org/doi/abs/10.1061/(ASCE)ST.1943-541X.0001151

Lee, H. J., Hwang, S. H., Yoon, H. N., Lee, W. K., & Park, K. S. (2015). Heart Rate Variability Monitoring during Sleep Based on Capacitively Coupled Textile Electrodes on a Bed. Sensors, 15(5), 11295–11311. https://doi.org/10.3390/s150511295

Mukhopadhyay, S. C. (2015). Wearable Sensors for Human Activity Monitoring: A Review. IEEE Sensors Journal, 15(3), 1321–1330. https://doi.org/10.1109/JSEN.2014.2370945

Min, S.D., Yun, Y., & Shin, H. (2014). Simplified Structural Textile Respiration Sensor Based on Capacitive Pressure Sensing Method. IEEE Sensors Journal, 14(9), 3245–3251. https://doi.org/10.1109/JSEN.2014.2327991

Putra, V.G.V., Ngadiono, & Purnomosari, E. (2016). Pengantar Listrik Magnet dan Terapannya. Yogyakarta: CV. Mulia Jaya.

Salvo, P., Di Francesco, F., Costanzo, D., Ferrari, C., Trivella, M. G., & De Rossi, D. (2010). A Wearable Sensor for Measuring Sweat Rate. IEEE Sensors Journal, 10(10), 1557–1558. https://doi.org/10.1109/JSEN.2010.2046634

Tang, X., Li, S., Shen, L., Zhao, W., Yang, X., Williams, R., Liu, J., Tan, Z., Hall, N. & Sun, N. (2019). 18.2 A 16fJ/Conversion-Step Time-Domain Two-Step Capacitance-to-Digital Converter. In 2019 IEEE International Solid- State Circuits Conference - (ISSCC). https://doi.org/10.1109/ISSCC.2019.8662359

Xia, J., Chen, F., Li, J., & Tao, N. (2009). Measurement of the quantum capacitance of graphene. Nature Nanotechnology, 4(8), 505–509. https://doi.org/10.1038/nnano.2009.177

Published
2019-05-30
How to Cite
Putra, V., Wijayono, A., Purnomosari, E., Ngadiono, N., & Irwan, I. (2019). Metode Pengukuran Kapasitansi Dengan Menggunakan Mikrokontroler Arduino Uno. JIPFRI (Jurnal Inovasi Pendidikan Fisika Dan Riset Ilmiah), 3(1), 36-45. https://doi.org/10.30599/jipfri.v3i1.425