Pengembangan Alat Uji Efisiensi Lampu Berbasis Mikrokontroller Arduino Uno untuk Evaluasi Tingkat Pencahayaan Lampu Meja Belajar di Laboratorium Fisika-Mekatronika Politeknik STTT Bandung

  • Valentinus Galih Vidia Putra Politeknik STTT Bandung
  • Andrian Wijayono Politeknik STTT Bandung
  • Ngadiyono Ngadiyono Politeknik STTT Bandung
  • Endah Purnomosari Politeknik STTT Bandung

Abstract

In this research, a light efficiency test tool has been designed using an Arduino UNO microcontroller to provide an understanding of the use of the ohm law application in basic physics practicum. This lamp efficiency test prototype uses an LDR sensor device and a resistor connected to the Arduino microcontroller as a light intensity detector, while the variation of electrical power is used by an AC variac with the lamp distance to the sensor having a constant value. The experimental results showed that the efficiency of the lamp can be obtained through a gradient of the luminosity curve on electric power. The efficiency of the lamp is 16.935 lm/watt and the average resistance can be obtained on 983.01  which the intensity in lux is 337,05 lux on 157,68 Lm and the maximum intensity in lux can be obtained on 453,35 lux on 208,54 Lm.

Keywords: Resistance, Current, Voltage, Electricity, Arduino

Downloads

Download data is not yet available.

References

Afinidad, T. C. B. (2010). Workstation and workspace ergonomics in philippine libraries: an emerging priority. Journal of Philippine Librarianship, 30(1), 21-44.

Atmodipuro, T. R. (2000). Sistem pencahayaan sebagai penunjang performansi kerja. In Proceeding Seminar Nasional Ergonomi.

Vincent, A. J., Spierings, E. L., & Messinger, H. B. (1989). A controlled study of visual symptoms and eye strain factors in chronic headache. Headache: The Journal of Head and Face Pain, 29(8), 523-527. https://doi.org/10.1111/j.1526-4610.1989.hed2908523.x

Badamasi, Y. A. (2014, September). The working principle of an Arduino. In 2014 11th international conference on electronics, computer and computation (ICECCO) (pp. 1-4). IEEE. https://doi.org/10.1109/ICECCO.2014.6997578

Dean, R. N., & Rane, A. K. (2013). A digital frequency-locked loop system for capacitance measurement. IEEE Transactions on Instrumentation and Measurement, 62(4), 777-784. https://doi.org/10.1109/TIM.2013.2240092

Dwiyanto, A., & Sukawi, (2013). Kajian Optimasi

Pencahayaan Alami pada Ruang

Perkuliahan Jurusan Arsitektur

Fakultas Teknik Universitas

Diponegoro. Journal of Architecture,

González, T., J. D., Torres-Sánchez, R., Blaya-Ros, P. J., Toledo-Moreo, A. B., Jiménez-Buendía, M., & Soto-Valles, F. (2019). Design and calibration of a low-cost SDI-12 soil moisture sensor. Sensors, 19(3), 491. https://doi.org/10.3390/s19030491

Halliday, D., Resnick, R. and Walker, J. (1997).

Fundamenthal of Physics-Extended, 5thJohn Wiley & Sons, New York.

Hoffmann, T., Eilebrecht, B., & Leonhardt, S. (2010). Respiratory monitoring system on the basis of capacitive textile force sensors. IEEE sensors journal, 11(5), 1112-1119. https://doi.org/10.1109/JSEN.2010.2082524

Imansyah, B. (2003, Februari). Dampak Sistem

Pencahayaan Bagi Kesehatan Mata.

http://www.sinarharapan.co.id/berita/

/28/ipt02.html. Diakses pada

tanggal 12 Februari 2016

Kondalkar, V. V., Ryu, G., Lee, Y., & Lee, K. (2019). Development of highly sensitive and stable humidity sensor for real-time monitoring of dissolved moisture in transformer-insulating oil. Sensors and Actuators B: Chemical, 286, 377-385. https://doi.org/10.1016/j.snb.2019.01.162

Putra, V. G. V., & Purnomosari, E. (2015). Pengantar Eksperimen Fisika. Yogyakarta: CV. Mulia Jaya. ISBN: 978.602.72713.0.2.

Putra, V. G. V., Ngadiono., & Purnomosari, E. (2016). Pengantar Listrik Magnet dan Terapannya. Yogyakarta: CV. Mulia Jaya. ISBN: 978-602- 72713-2-6 1.

Putra, V. G. V. (2017). Pengantar Fisika Dasar. CV.Mulia Jaya Publisher, Yogyakarta.

Putra, V. G. V., Ngadiono., & Purnomosari, E. (2019). Pengantar Praktikum Mekatronika Tekstil. Yogyakarta: CV. Mulia Jaya. ISBN: 9786025165832.

Picker, P., Leduc, P. A., Philip, P. R., & Desnoyers, J. E. (1971). Heat capacity of solutions by flow microcalorimetry. The Journal of Chemical Thermodynamics, 3(5), 631-642. https://doi.org/10.1016/S0021-9614(71)80 084-8

Raine, H. C., Richards, R. B., & Ryder, H. (1945). The heat capacity, heat of solution, and crystallinity of polythene. Transactions of the Faraday Society, 41, 56-64. https://doi.org/10.1039/TF9454100056

Salvo, P., Di Francesco, F., Costanzo, D., Ferrari, C., Trivella, M. G., & De Rossi, D. (2010). A wearable sensor for measuring sweat rate. IEEE Sensors Journal, 10(10), 1557-1558. https://doi.org/10.1109/JSEN.2010.2046634

Sreejith, K. R., Shyamkumar, P. G., Appu, R. P., & Sreedevi, C. (2015, December). A low cost automated specific heat capacity meter for liquids. In 2015 International Conference on Trends in Automation, Communications and Computing Technology (I-TACT-15) (pp. 1-4). IEEE. https://doi.org/10.1109/ITACT.2015.7492691

Stranks, J. (2006). The manager's guide to health and safety at work. Kogan Page Publishers.

Published
2020-11-28
How to Cite
Putra, V., Wijayono, A., Ngadiyono, N., & Purnomosari, E. (2020). Pengembangan Alat Uji Efisiensi Lampu Berbasis Mikrokontroller Arduino Uno untuk Evaluasi Tingkat Pencahayaan Lampu Meja Belajar di Laboratorium Fisika-Mekatronika Politeknik STTT Bandung. JIPFRI (Jurnal Inovasi Pendidikan Fisika Dan Riset Ilmiah), 4(2), 65-71. https://doi.org/10.30599/jipfri.v4i2.640