Pengukuran Konstanta Dielektrik Udara Pada Perangkat Kapasitor Plat-Sejajar Berbasis Mikrokontroler Arduino Uno

  • Andrian Wijayono Politeknik STTT Bandung
  • Valentinus Galih Vidia Putra Politeknik STTT Bandung
Keywords: Capacitor, Dielectric constant, Charging, Discharging

Abstract

This study aims to design a prototype of an air dielectric constant measuring device and be able to measure the capacitance value using an Arduino microcontroller device. The measurement of the air dielectric constant is carried out by means of the principle of measuring the capacitance of a capacitor device with a plate-parallel configuration with the air dielectric material. Capacitance measurements are carried out with the principle of charging and emptying capacitors using an Arduino Uno microcontroller device. The charging and discharging process is carried out using a series of resistor-capacitor (RC) series with a source voltage of 5 volts from the microcontroller device. This experiment has used a parallel plate with a size of 29 × 30 cm as an electrode capacitor, and a resistor device with a size of 125 megaOhm. The results showed that the behavior of charging and discharging parallel plate capacitor devices has an R square value of> 0.9, which shows a fairly good correlation between the predicted and experimental results on capacitance measurements. The results showed that the prototype of a dielectric constant measuring device can be well designed by showing the capacitance value of the device at the state of filling and emptying and the measurement results show the value of the air dielectric constant has been measured with a value of 0.991 - 1.0346.

Downloads

Download data is not yet available.

Author Biography

Valentinus Galih Vidia Putra, Politeknik STTT Bandung

Head of Textile Physics and Mechatronics Laboratory

References

Allagui, A., Elwakil, A. S., Fouda, M. E., & Radwan, A. G. (2018). Capacitive behavior and stored energy in supercapacitors at power line frequencies. Journal of Power Sources, 390,142–147. https://doi.org/10.1016/j.jpowsour.2018.04.035

Argin, M., & Karady, G. G. (2008). Characterization of polyurethane foam dielectric strength. IEEE Transactions on Dielectrics and Electrical Insulation, 15(2), 350-356. https://doi.org/10.1109/TDEI.2008.4483452

Arshad, A., Khan, S., Alam, A. H. M. Z., Tasnim, R., Gunawan, T. S., Ahmad, R., & Nataraj, C. (2016). An activity

monitoring system for senior citizens living independently using capacitive sensing technique. In IEEE International Instrumentation and Measurement Technology Conference Proceedings. https://doi.org/10.1109/I2MTC.2016.7520405

Arum, Z. H., Widodo, C. S., & Saroja, G. (2015). Studi pengukuran nilai konstanta dielektrik oli berbagai viskositas pada frekuensi 100 Hz-2000 Hz. Skripsi. Malang: Universitas Brawijaya.

Bandyopadhyay, P. C., Chaki, T. K., Srivastava, S., & Sanyal, G. S. (1980). Dielectric behavior of polystyrene foam at microwave frequency. Polymer Engineering & Science, 20(6), 441-446. https://doi.org/10.1002/pen.760200610

Cahyono, B.E., Supriyadi, S. & Rofiq, M.A. (2017). Karakteristik Sensor Kapasitif Pelat Sejajar Dalam Aplikasinya Sebagai Instrumen Pengukur Curah Hujan Berbasis Arduino Uno. Indonesian Journal of Applied Physics. Vol. 7, No. 2. https://doi.org/10.13057/ijap.v7i2.14248

Cheng, J., Amft, O., Bahle, G., & Lukowicz, P. (2013). Designing Sensitive Wearable Capacitive Sensors for Activity Recognition. IEEE Sensors Journal, 13(10), 3935–3947. https://doi.org/10.1109/JSEN.2013.2259693

Coyle, S., King-Tong Lau, Moyna, N., O’Gorman, D., Diamond, D., Di Francesco, F., Costanzo, D., Salvo, P., Trivella, M.G., De Rossi, D.E., Taccini, N., Paradiso, R., Porchet, J.A., Ridolfi, A., Luprano, J., Chuzel, C., Lanier, T., Cavalier, R., Schoumacker, S., Mourier, V., Chartier, I., Convert, R., De Moncuit, H., & Bini, C. (2010). BIOTEX—Biosensing Textiles for Personalised Healthcare Management. IEEE Transactions on Information Technology in Biomedicine, 14(2), 364-370. https:/doi.org/10.1109/TITB.2009.203.8484

Dean, R. N., & Rane, A. K. (2013). A Digital Frequency-Locked Loop System for Capacitance Measurement. IEEE Transactions on Instrumentation and Measurement, 62(4), 777–784. https://doi.org/10.1109/TIM.2013.2240092

Halliday, D., Resnick, R., Walker. (1997). Fundamentals of Physics-Extended, 5th, John Wiley & Sons, New York.

Hidayat, M. R., Widodo, C. S., & Saroja, G. (2013). Kajian Karakteristik Biolistrik Kulit Ikan Lele (Clarias Batrachus) Dengan Metode Dielektrik Frekuensi Rendah. Dessertasi Doktor: Universitas Brawijaya.

Hoffmann, T., Eilebrecht, B., & Leonhardt, S. (2011). Respiratory Monitoring System on the Basis of Capacitive Textile Force Sensors. IEEE Sensors Journal, 11(5), 1112–1119. https://doi.org/10.1109/JSEN.2010.2082524

Juansah, J., & Irmansyah, I. (2012). Kajian Sifat Dielektrik Buah Semangka Dengan Pemanfaat Sinyal Listrik Frekuensi Rendah. Jurnal Sains MIPA Universitas Lampung, 5(3).

Karady, G. G., Argin, M., Rahmatian, F., & Rose, A. H. (2004, October). Polyurethane foam application for high voltage insulation. In The 17th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2004. LEOS 2004 (pp. 526-529). IEEE. https://doi.org/10.1109/CEIDP.2004.1364303

Karady, G. G., Argin, M., Shi, B., Rahmatian, F., & Rose, A. H. (2003, September). Electrical properties of rigid pour polyurethane foam applied for high voltage insulation. In 2003 IEEE PES Transmission and Distribution Conference and Exposition (IEEE Cat. No. 03CH37495) (Vol. 3, pp. 870-874). IEEE. https://doi.org/10.1109/TDC.2003.1335051

Knott, E. F. (1993). Dielectric constant of plastic foams. IEEE transactions on antennas and propagation, 41(8), 1167-1171. https://doi.org/10.1109/8.244664

Kondalkar, V. V., Ryu, G., Lee, Y., & Lee, K. (2019). Development of highly sensitive and stable humidity sensor for real-time monitoring of dissolved moisture in transformer-insulating oil. Sensors and Actuators B: Chemical, 286, 377-385. https://doi.org/10.1016/j.snb.2019.01.162

Laflamme, S., Saleem, H. S., Vasan, B. K., Geiger, R. L., Chen, D., Kessler, M. R., & Rajan, K. (2013). Soft Elastomeric

Capacitor Network for Strain Sensing Over Large Surfaces. IEEE/ASME Transactions on Mechatronics, 18(6), 1647–1654. https://doi.org/10.1109/TMECH.2013.2283365

Laflamme, S., Ubertini, F., Saleem, H., D’Alessandro, A., Downey, A., Ceylan, H., & Materazzi, A. L. (2015). Dynamic Characterization of a Soft Elastomeric Capacitor for Structural Health Monitoring. Journal of Structural Engineering, 141(8), 04014186. https://ascelibrary.org/doi/abs/10.1061/(ASCE)ST.1943-541X.0001151

Lee, H. J., Hwang, S. H., Yoon, H. N., Lee, W. K., & Park, K. S. (2015). Heart Rate Variability Monitoring during Sleep

Based on Capacitively Coupled Textile Electrodes on a Bed. Sensors, 15(5),11295–11311. https://doi.org/10.3390/s150511295

Min, S.D., Yun, Y., & Shin, H. (2014). Simplified Structural Textile Respiration Sensor Based on Capacitive Pressure Sensing Method. IEEE Sensors Journal, 14(9), 3245–3251. https://doi.org/10.1109/JSEN.2014.2327991

Mukhopadhyay, S. C. (2015). Wearable Sensors for Human Activity Monitoring: A Review. IEEE Sensors Journal,

(3), 1321–1330. https://doi.org/10.1109/JSEN.2014.2370945

Pereira, R. G., Naik, D. A., Naik, S. S., Naik, S. D., & Cardoso, S. (2016). Capacitive sensor interfaced with arduino. International Journal of Science Technology & Engineering, 2(15), 90-95.

Prihatnolo, S. T., Syakur, A., & Facta, M. (2011). Pengukuran Tegangan Tembus Dielektrik Udara Pada berbagai Sela Dan Bentuk Elektroda Dengan Variasi Temperatur Sekitar. Dessertasi Doktor: Universitas Diponegoro.

Putra, V.G.V.,& Purnomosari, E. (2016). Pengantar Listrik Magnet Dan Terapannya. CV. Mulia Jaya. ISBN 978-602072713-2-6.

Putra, V. G. V., Wijayono, A., Purnomosari, E., Ngadiono, N., & Irwan, I. (2019). Metode Pengukuran Kapasitansi Dengan Menggunakan Mikrokontroler Arduino Uno. JIPFRI (Jurnal Inovasi Pendidikan Fisika Dan Riset Ilmiah), 3(1), 36-45. https://doi.org/10.30599/jipfri.v3i1.425

Rizza, H., Sudarti, S., & Handono, S. (2019). Aplikasi Kapasitansi Meter Disertai Sistem Data Logger Berbasis Arduino Uno Untuk Uji Tingkat Kematangan Buah Pisang. FKIP e-PROCEEDING, 3(2), 1-5.

Rosita, F. N., & Widodo, C. S. (2014). Kajian Pengaruh Campuran Lemak Babi Terhadap Konstanta Dielektrik Lemak Ayam Menggunakan Metode Dielektrik.Dessertasi Doktor:Universitas Brawijaya.

Salvo, P., Di Francesco, F., Costanzo, D., Ferrari, C., Trivella, M. G., & De Rossi, D. (2010). A Wearable Sensor for

Measuring Sweat Rate. IEEE Sensors Journal, 10(10), 1557–1558. https://doi.org/10.1109/JSEN.2010.2046634

Tang, X., Li, S., Shen, L., Zhao, W., Yang, X., Williams, R., Liu, J., Tan, Z., Hall, N. & Sun, N. (2019). 18.2 A 16fJ/Conversion-Step Time-Domain Two-Step Capacitance-to-Digital Converter. In 2019 IEEE International Solid- State Circuits Conference - (ISSCC). https://doi.org/10.1109/ISSCC.2019.8662359

Xia, J., Chen, F., Li, J., & Tao, N. (2009). Measurement of the quantum capacitance of graphene. Nature Nanotechnology, 4(8), 505–509. https://doi.org/10.1038/nnano.2009.177

Published
2020-05-26
How to Cite
Wijayono, A., & Putra, V. (2020). Pengukuran Konstanta Dielektrik Udara Pada Perangkat Kapasitor Plat-Sejajar Berbasis Mikrokontroler Arduino Uno. JIPFRI (Jurnal Inovasi Pendidikan Fisika Dan Riset Ilmiah), 4(1), 13-26. https://doi.org/10.30599/jipfri.v4i1.651