Analisis Dinamika Stroller (Kereta Bayi) dengan Metode Port-Controlled Hamiltonian System (PCHS) berbasis Komputasi Fisika

  • Melly Ariska Pendidikan Fisika FKIP Universitas Sriwijaya
  • Hamdi Akhsan Pendidikan Fisika FKIP Universitas Sriwijaya
  • Muhammad Muslim Pendidikan Fisika FKIP Universitas Sriwijaya

Abstract

Computational physics can be used to help solve complex dynamics equations, both translational and rotational. The purpose of this study is to obtain differences in the dynamics of mechanical systems with non-holonomic constraints in various flat and curved configuration spaces based on physics computing. In this study the reduction used is a mathematical calculation of the Port-Contolled Hamiltonian System (PCHS) equation in a mechanical system that is a Stroller, so that the equation used in determining the Stroller motion equation with and without friction that moves in the curved plane in the form of a spherical surface with various initial conditions based on maple is Poincaré's equation which is based on Routhian reduction with and without friction. The effect of friction can be clearly seen through dynamics and graphical equations on the Stroller. This method can reduce the Stroller motion equation with and without friction that moves on the ball sphere clearly in the form of a set of differential equations. The findings of this study are dynamic equations and graphs of Stroller equations with and without friction that move in the curved plane in the form of a spherical ball with varying initial conditions based on maples. This study proves physical concepts about dynamics and kinematics and analyzes Stroller dynamics using computational physics to determine the characteristics of complex and complex Stroller movements, both translational and rotational.

Keywords: Dynamics, Stroller, PCHS Method, Computational Physics

Downloads

Download data is not yet available.

References

Akhsan, H., Wiyono, K., Ariska, M., & Melvany, N. E. (2020). Development of HOTS (higher order thinking skills) test instruments for the concept of fluid and harmonic vibrations for high schools. Journal of Physics: Conference Series, 1480(1). https://doi.org/10.1088/1742-6596/1480/1/012071

Ariska, M., Akhsan, H., & Muslim, M. (2020a). Dynamic Analysis of Tippe Top on Cylinder’s Inner Surface with and Without Friction based on Routh Reduction. Journal of Physics: Conference Series, 1467(1). https://doi.org/10.1088/1742-6596/1467/1/012040

Ariska, M., Akhsan, H., & Muslim, M. (2020b). Potential energy of mechanical system dynamics with nonholonomic constraints on the cylinder configuration space. Journal of Physics: Conference Series, 1480(1). https://doi.org/10.1088/1742-6596/1480/1/012075

Ariska, M., Akhsan, H., & Muslim, M. (2019). Utilization of physics computation based on maple in determining the dynamics of tippe top. Journal of Physics: Conference Series, 1166(1). https://doi.org/10.1088/1742-6596/1166/1/012009

Ariska, Melly, Akhsan, H., & Muslim, M. (2020a). DINAMIKA SISTEM MEKANIK NON-HOLONOMIK DENGAN METODE. 6(1), 20–23.

Ariska, Melly, Akhsan, H., & Muslim, M. (2020b). Vector Fields of the Dynamics of Non-Holonomic Constraint System With Elliptical Configuration Space. 513, 738–744.

Ariska, Melly, Akhsan, H., & Zulherman, Z. (2018). Utilization of Maple-based Physics Computation in Determining the Dynamics of Tippe Top. Jurnal Penelitian Fisika Dan Aplikasinya (JPFA), 8(2), 123. https://doi.org/10.26740/jpfa.v8n2.p123-131

Blankenstein, G. (2003). Symmetries and locomotion of a 2D mechanical network : the Snakeboard. July, 1–16.

Bou-Rabee, N. M., Marsden, J. E., & Romero, L. A. (2004). Tippe top inversion as a dissipation-induced instability. SIAM Journal on Applied Dynamical Systems, 3(3), 352–377. https://doi.org/10.1137/030601351

Bou-Rabee, N. M., Marsden, J. E., & Romero, L. A. (2008). Dissipation-induced heteroclinic orbits in tippe tops. SIAM Review, 50(2), 325–344. https://doi.org/10.1137/080716177

Branicki, M., Moffatt, H. K., & Shimomura, Y. (2006). Dynamics of an axisymmetric body spinning on a horizontal surface. III. Geometry of steady state structures for convex bodies. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 462(2066), 371–390. https://doi.org/10.1098/rspa.2005.1586

Branicki, M., & Shimomura, Y. (2006). Dynamics of an axisymmetric body spinning on a horizontal surface. IV. Stability of steady spin states and the “rising egg” phenomenon for convex axisymmetric bodies. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 462(2075), 3253–3275. https://doi.org/10.1098/rspa.2006.1727

Ciocci, M. C., & Langerock, B. (2007). Dynamics of the tippe top via Routhian reduction. Regular and Chaotic Dynamics, 12(6), 602–614. https://doi.org/10.1134/S1560354707060032

Ciocci, M. C., Malengier, B., Langerock, B., & Grimonprez, B. (2012). Towards a prototype of a spherical tippe top. Journal of Applied Mathematics, 2012. https://doi.org/10.1155/2012/268537

Fowles, G. R., & Cassiday, G. L. (2004). Analytical Mechanics (7th Edition).

Glad, S. T., Petersson, D., & Rauch-Wojciechowski, S. (2007). Phase space of rolling solutions of the tippe top. Symmetry, Integrability and Geometry: Methods and Applications (SIGMA), 3. https://doi.org/10.3842/SIGMA.2007.041

Gray, C. G., & Nickel, B. G. (2000). Constants of the motion for nonslipping tippe tops and other tops with round pegs. American Journal of Physics, 68(9), 821–828. https://doi.org/10.1119/1.1302299

Naomi Altman & Martin Krzywinski. (2015). Simple linear regression. BMJ (Online), 346(7904), 999–1000. https://doi.org/10.1136/bmj.f2340

Rauch-Wojciechowski, S., Sköldstam, M., & Glad, T. (2005). Mathematical analysis of the tippe top. Regular and Chaotic Dynamics, 10(4), 333–362. https://doi.org/10.1070/RD2005v010n04ABEH000319

Rutstam, N. (2010). Study of equations for tippe top and related rigid bodies (Doctoral dissertation, Linköping University Electronic Press). http://liu.diva-portal.org/smash/get/diva2:359340/FULLTEXT01

Shaidullin, R. N., Safiullin, L. N., Gafurov, I. R., & Safiullin, N. Z. (2014). Blended Learning: Leading Modern Educational Technologies. Procedia - Social and Behavioral Sciences, 131(904), 105–110. https://doi.org/10.1016/j.sbspro.2014.04.087

Ueda, T., Sasaki, K., & Watanabe, S. (2005). Motion of the tippe top: Gyroscopic balance condition and stability. SIAM Journal on Applied Dynamical Systems, 4(4), 1159–1194. https://doi.org/10.1137/040615985

Zobova, A. A. (2012). Comments on the Paper by M.C. Ciocci, B. Malengier, B. Langerock, and B. Grimonprez “Towards a Prototype of a Spherical Tippe Top.” Regular and Chaotic Dynamics, 17(3–4), 367–369. https://doi.org/10.1134/S1560354712030112

Published
2020-11-28
How to Cite
Ariska, M., Akhsan, H., & Muslim, M. (2020). Analisis Dinamika Stroller (Kereta Bayi) dengan Metode Port-Controlled Hamiltonian System (PCHS) berbasis Komputasi Fisika. JIPFRI (Jurnal Inovasi Pendidikan Fisika Dan Riset Ilmiah), 4(2), 77-84. https://doi.org/10.30599/jipfri.v4i2.682